Chat Completions API
The Chat Completions API is the primary interface for conversational interactions with language models through Conduit. It follows the OpenAI chat completions format.
Endpoint
POST /v1/chat/completions
Request Parameters
Parameter | Type | Required | Description |
---|---|---|---|
model | string | Yes | The ID of the model to use (your configured virtual model name) |
messages | array | Yes | Array of message objects with role and content |
temperature | number | No | Controls randomness (0-2, default 1) |
top_p | number | No | Controls diversity via nucleus sampling (0-1, default 1) |
n | integer | No | Number of completions to generate (default 1) |
stream | boolean | No | Stream partial results as they're generated (default false) |
stop | string/array | No | Sequence(s) where the API will stop generating |
max_tokens | integer | No | Maximum number of tokens to generate |
presence_penalty | number | No | Penalty for new tokens based on presence in context (-2 to 2) |
frequency_penalty | number | No | Penalty for new tokens based on frequency in context (-2 to 2) |
logit_bias | object | No | Modify likelihood of specified tokens |
user | string | No | Unique identifier for the end-user |
tools | array | No | List of tools the model may call |
tool_choice | string/object | No | Controls how the model calls tools |
response_format | object | No | Format of the response (eg. JSON mode) |
seed | integer | No | Seed for deterministic outputs |
cache_control | object | No | Control caching behavior |
routing | object | No | Custom routing options for this request |
Basic Example
- cURL
- Python
- JavaScript
- C#
curl http://localhost:5000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer condt_your_virtual_key" \
-d '{
"model": "my-gpt4",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
]
}'
from openai import OpenAI
client = OpenAI(
api_key="condt_your_virtual_key",
base_url="http://localhost:5000/v1"
)
response = client.chat.completions.create(
model="my-gpt4",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
]
)
print(response.choices[0].message.content)
import OpenAI from 'openai';
const openai = new OpenAI({
apiKey: 'condt_your_virtual_key',
baseURL: 'http://localhost:5000/v1'
});
async function main() {
const completion = await openai.chat.completions.create({
model: 'my-gpt4',
messages: [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
],
});
console.log(completion.choices[0].message.content);
}
main();
using System;
using System.Collections.Generic;
using System.Net.Http;
using System.Text;
using System.Text.Json;
using System.Threading.Tasks;
class Program
{
static async Task Main()
{
var client = new HttpClient();
client.BaseAddress = new Uri("http://localhost:5000/");
client.DefaultRequestHeaders.Add("Authorization", "Bearer condt_your_virtual_key");
var request = new
{
model = "my-gpt4",
messages = new[]
{
new { role = "system", content = "You are a helpful assistant." },
new { role = "user", content = "Hello!" }
}
};
var content = new StringContent(
JsonSerializer.Serialize(request),
Encoding.UTF8,
"application/json");
var response = await client.PostAsync("v1/chat/completions", content);
var responseBody = await response.Content.ReadAsStringAsync();
Console.WriteLine(responseBody);
}
}
Response Format
{
"id": "chatcmpl-abc123",
"object": "chat.completion",
"created": 1677858242,
"model": "my-gpt4",
"choices": [
{
"message": {
"role": "assistant",
"content": "Hello! How can I help you today?"
},
"finish_reason": "stop",
"index": 0
}
],
"usage": {
"prompt_tokens": 18,
"completion_tokens": 8,
"total_tokens": 26
}
}
Streaming Example
- cURL
- Python
- JavaScript
curl http://localhost:5000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer condt_your_virtual_key" \
-d '{
"model": "my-gpt4",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
],
"stream": true
}'
from openai import OpenAI
client = OpenAI(
api_key="condt_your_virtual_key",
base_url="http://localhost:5000/v1"
)
stream = client.chat.completions.create(
model="my-gpt4",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
],
stream=True
)
for chunk in stream:
if chunk.choices[0].delta.content is not None:
print(chunk.choices[0].delta.content, end="")
import OpenAI from 'openai';
const openai = new OpenAI({
apiKey: 'condt_your_virtual_key',
baseURL: 'http://localhost:5000/v1'
});
async function main() {
const stream = await openai.chat.completions.create({
model: 'my-gpt4',
messages: [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
],
stream: true,
});
for await (const chunk of stream) {
process.stdout.write(chunk.choices[0]?.delta?.content || '');
}
}
main();
Multimodal Example
- cURL
- Python
curl http://localhost:5000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer condt_your_virtual_key" \
-d '{
"model": "my-vision-model",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "..."
}
}
]
}
]
}'
from openai import OpenAI
import base64
client = OpenAI(
api_key="condt_your_virtual_key",
base_url="http://localhost:5000/v1"
)
# Function to encode the image
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
# Path to your image
image_path = "path/to/your/image.jpg"
# Getting the base64 string
base64_image = encode_image(image_path)
response = client.chat.completions.create(
model="my-vision-model",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in this image?"
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
}
]
)
print(response.choices[0].message.content)
Tool Calling Example
- cURL
- Python
curl http://localhost:5000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer condt_your_virtual_key" \
-d '{
"model": "my-gpt4",
"messages": [
{"role": "user", "content": "What is the weather in San Francisco?"}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location"]
}
}
}
]
}'
from openai import OpenAI
client = OpenAI(
api_key="condt_your_virtual_key",
base_url="http://localhost:5000/v1"
)
response = client.chat.completions.create(
model="my-gpt4",
messages=[
{"role": "user", "content": "What is the weather in San Francisco?"}
],
tools=[
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location"]
}
}
}
]
)
print(response.choices[0].message)
Conduit-Specific Extensions
Cache Control
Control the caching behavior for this specific request:
{
"model": "my-gpt4",
"messages": [...],
"cache_control": {
"no_cache": false,
"ttl": 7200
}
}
Custom Routing
Override the default routing strategy for this specific request:
{
"model": "my-gpt4",
"messages": [...],
"routing": {
"strategy": "least_cost",
"fallback_enabled": true,
"provider_override": "anthropic"
}
}
Error Codes
HTTP Code | Error Type | Description |
---|---|---|
400 | invalid_request_error | The request was malformed |
401 | authentication_error | Invalid or missing API key |
403 | permission_error | The API key doesn't have permission |
404 | not_found_error | The requested model was not found |
429 | rate_limit_error | Rate limit exceeded |
500 | server_error | Server error |
Next Steps
- Embeddings API: Generate vector embeddings
- Models API: List and filter available models
- Virtual Keys: Learn about API key management